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Spatially periodic fundamental solutions of the theory of oscillations are constructed, applicable to anisotropic elastic media with 
a general form of anisotropy. The results are compared with the isotropic case. © 1998 Elsevier Science Ltd. All rights reserved. 

Spatially periodic fundamental solutions for the Helmholtz equation were apparently first constructed by Titehmarsh 
by expansion in Fourier series [1]. This method was employed in [2] in the case of spatially periodic equations of 
the statics of an anisotropic body. Fundamental solutions for (spatially) periodic problems of the theory of oscillations 
in the case of an isotropic medium were obtained in [3]. 

1. F U N D A M E N T A L  O P E R A T O R S  

We will consider an elastically anisotropic uniform medium in R 3, the equations of  the oscillations of which have 
the form 

A(~, 0)) u -- -divxC..V~u - ~ u  = o (1.1) 

where A is a matrix differential operator of  the theory of oscillations, C is the four-valent elasticity tensor, u is the 
displacement field in the medium and 0) is the frequency of the oscillations. 

We will assume that the tensor C is strictly elliptic, which ensures that the operator A(Ox, 0) is strictly elliptic. 
The medium is assumed to be hyperelastic, which guarantees that the tensor C is symmetrical if it is regarded as 
an operator which acts in the space of symmetric second-rank tensors. 

The Fourier integral transformation 

f ^ (~ )  = ~ f ( x )exp(2x i~ .x )dx  
R 3 

applied to the operator A enables us to obtain the corresponding symbol 

A^(~, 0)) = (27g)2~.C.~ - 0)21 (1.2) 

where I is the unit diagonal matrix. 
From (1.2) one can obtain the symbol of  a spatially non-periodic fundamental solution of the equation of the 

oscillation theory (the Fourier transform of the fundamental solutions) 

E^(~, 0)) = A~(~, 0))-~ (1.3) 

In the general case of anisotropy, the Fourier transformation of expression (1.3) can only be carried out 
numerically [2], but for spatially periodic fundamental solutions it is sufficient to determine the symbol E ^ .  

2. C O N S T R U C T I O N  O F  A P E R I O D I C  F U N D A M E N T A L  S O L U T I O N  

Consider the identity 

A(3x; co) Ep(x, ¢0) = 8p(x) I (2.1) 

where the subscriptp indicates spatial periodicity. By analogy with the approach employed previously in [2], we 
will represent the periodic &function in the form of a series 
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~i,(x)=v6 ~ E exp(2n/ra*.x) (2.2) 
In*tEA* 

where VQ is the volume of the fundamental region, A ° is the grid of the conjugate basis, and m* are the conjugate 
nodes. 

Expanding the fundamental solution E,  in the form of a similar series, we obtain from (2.1) 

E (m ,to)exp(2rdm • x) (2.3) v61 . " " 

EA 

Hence, to construct a spatially periodic fundamental solution it is sufficient to know the symbol Ep, which is 
easily calculated from (1.3). 

Note. For a simple cubic structural grid with vectors of the fundamental basis of unit length, the vectors of the 
conjugate basis form a conjugate structural grid, which coincides with the initial grid. In this case it is natural to 
carry out the summation in (2.2) and (2.3) over the nodal points of the grid of the fundamental basis. 

Assertions 1. The series on the right-hand side of (2.3) is absolutely divergent for any values of to and x. 
The proof of Assertion 1 follows from the general scheme of the proof of the formula for Poisson summation 

for periodic functions [4]. The proof of Assertion 2 follows from the divergence i n /~  of majorant multiple series 
with the asymptotic estimate 

I.t.,l=o(lml-=), Iml-->**, m ~ A  (2.4) 

where A is an arbitrary structural grid in R 3. The estimate (2.4) in turn follows directly from (1.2) and (1.3). 

3. P E R I O D I C  F U N D A M E N T A L  S O L U T I O N  O F  T H E  O S C I L L A T I O N  
T H E O R Y  F O R  A N  I S O T R O P I C  E L A S T I C  M E D I U M  

The equations of the oscillation theory for the operator of the theory of elasticity in the isotropic case in tensor 
notation have the form 

(~, +IX) Uj.ij+IX~i+pto2ui=O, i , j= 1,2,3 (3.1) 

where ~, and Ix are the Lam6 coefficients and p is the density of the medium, and summation is carried out over 
repeated subscripts from 1 to 3. The components of the fundamental solution Emi satisfy the following identity 

(~, + Ix) Emj,i j + t.t AEmi + pto2Emi = 8(x) 8mi (3.2) 

Substituting into (3.2) the expansion of 8(x) and E(x) in Fourier series 

1 ** ~(x)= (~)3 ~k ei(kx), Emi(X)= ~ Fk,~ i(Itx) "~rni- , k=(kl,k2,k3) (3.3) 
k 

we obtain that the components Ekmi must satisfy the following system of linear equations 

E~mAi~ =~mi (3.4) 
^ 

Aij = Ix(2~) 3 (8/)132 - 8U Ik[2 -('q-2 _ 1) kik j ) 

IB=to/c2, G =[O.+2ta)/p] ~A, c2=[Ix/p] ~A, "q=c2/G 

where C 1 and C 2 a re  the velocities of propagation of longitudinal and transverse waves in the elastic medium. In (3.3) 
we have assumed that the parameter k belongs to thegrid of the conjugate basis, formed by vectors of length 2~. 

Solving the system of linear equations (3.4) for A ij, we obtain 

1 (~2 2 2k2 Elkl =~--~D p "q -TI i - k 2  +k2k3(1-'q2))(l~2"n2 -112k? -k22 -k2k3(1-1"12)) 

= 

E31t _ 1 ,o2 3 - - k ?  - k )(132  - k ?  ( 3 . 5 )  
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e~2 = n 2--~ (1] 2 - J ) , , ~  (-13~1] ~ + 115,? + k~ - , ~ v  - ~2)) 

n 1,2 

E~j=E~i, i # j  

D = p.{27¢) 3 (132 "kl  2 - k22) ((1~2rl2 _ k~ )2 _ n2kl 2 (132 + 1~2,q2 _ k12) _ 

+1] ) - ( 1 - 1 ]  ) k3(k ! + k s )  ) 

The components of  the spatially periodic fundamental solution of  the oscillation theory for an isotropic medium 
are given by (3.5). 

The investigations presented in this paper  were partially financed by the International Science Foundation 
(MTY000). 
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